2,558 research outputs found

    From Now to Timelike Infinity on a Finite Grid

    Get PDF
    We use the conformal approach to numerical relativity to evolve hyperboloidal gravitational wave data without any symmetry assumptions. Although our grid is finite in space and time, we cover the whole future of the initial data in our calculation, including future null and future timelike infinity.Comment: 15 pages, 14 figures, revtex

    On Killing vectors in initial value problems for asymptotically flat space-times

    Get PDF
    The existence of symmetries in asymptotically flat space-times are studied from the point of view of initial value problems. General necessary and sufficient (implicit) conditions are given for the existence of Killing vector fields in the asymptotic characteristic and in the hyperboloidal initial value problem (both of them are formulated on the conformally compactified space-time manifold)

    On the Effect of Constraint Enforcement on the Quality of Numerical Solutions in General Relativity

    Get PDF
    In Brodbeck et al 1999 it has been shown that the linearised time evolution equations of general relativity can be extended to a system whose solutions asymptotically approach solutions of the constraints. In this paper we extend the non-linear equations in similar ways and investigate the effect of various possibilities by numerical means. Although we were not able to make the constraint submanifold an attractor for all solutions of the extended system, we were able to significantly reduce the growth of the numerical violation of the constraints. Contrary to our expectations this improvement did not imply a numerical solution closer to the exact solution, and therefore did not improve the quality of the numerical solution.Comment: 14 pages, 9 figures, accepted for publication in Phys. Rev.

    Local twistors and the conformal field equations

    Full text link
    This note establishes the connection between Friedrich's conformal field equations and the conformally invariant formalism of local twistors.Comment: LaTeX2e Minor corrections of misprints et

    A Scheme to Numerically Evolve Data for the Conformal Einstein Equation

    Get PDF
    This is the second paper in a series describing a numerical implementation of the conformal Einstein equation. This paper deals with the technical details of the numerical code used to perform numerical time evolutions from a "minimal" set of data. We outline the numerical construction of a complete set of data for our equations from a minimal set of data. The second and the fourth order discretisations, which are used for the construction of the complete data set and for the numerical integration of the time evolution equations, are described and their efficiencies are compared. By using the fourth order scheme we reduce our computer resource requirements --- with respect to memory as well as computation time --- by at least two orders of magnitude as compared to the second order scheme.Comment: 20 pages, 12 figure

    Ultrafast Spin Dynamics in Nickel

    Full text link
    The spin dynamics in Ni is studied by an exact diagonalization method on the ultrafast time scale. It is shown that the femtosecond relaxation of the magneto-optical response results from exchange interaction and spin-orbit coupling. Each of the two mechanisms affects the relaxation process differently. We find that the intrinsic spin dynamics occurs during about 10 fs while extrinsic effects such as laser-pulse duration and spectral width can slow down the observed dynamics considerably. Thus, our theory indicates that there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure

    Unique phase diagram with narrow superconducting dome in EuFe2_2(As1−x_{1-x}Px_x)2_2 due to Eu2+^{2+} local magnetic moments

    Full text link
    The interplay between superconductivity and Eu2+ ^{2+} magnetic moments in EuFe2_2(As1−x_{1-x}Px_x)2_2 is studied by electrical resistivity measurements under hydrostatic pressure on x=0.13x=0.13 and x=0.18x=0.18 single crystals. We can map hydrostatic pressure to chemical pressure xx and show, that superconductivity is confined to a very narrow range 0.18≤x≤0.230.18\leq x \leq 0.23 in the phase diagram, beyond which ferromagnetic (FM) Eu ordering suppresses superconductivity. The change from antiferro- to FM Eu ordering at the latter concentration coincides with a Lifshitz transition and the complete depression of iron magnetic order.Comment: 4 page

    General Relativistic Scalar Field Models in the Large

    Full text link
    For a class of scalar fields including the massless Klein-Gordon field the general relativistic hyperboloidal initial value problems are equivalent in a certain sense. By using this equivalence and conformal techniques it is proven that the hyperboloidal initial value problem for those scalar fields has an unique solution which is weakly asymptotically flat. For data sufficiently close to data for flat spacetime there exist a smooth future null infinity and a regular future timelike infinity.Comment: 22 pages, latex, AGG 1

    Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis

    Full text link
    We extend our previous study of the polarization dependence of the nonlinear optical response to the case of magnetic surfaces and buried magnetic interfaces. We calculate for the longitudinal and polar configuration the nonlinear magneto-optical Kerr rotation angle. In particular, we show which tensor elements of the susceptibilities are involved in the enhancement of the Kerr rotation in nonlinear optics for different configurations and we demonstrate by a detailed analysis how the direction of the magnetization and thus the easy axis at surfaces and buried interfaces can be determined from the polarization dependence of the nonlinear magneto-optical response, since the nonlinear Kerr rotation is sensitive to the electromagnetic field components instead of merely the intensities. We also prove from the microscopic treatment of spin-orbit coupling that there is an intrinsic phase difference of 90∘^{\circ } between tensor elements which are even or odd under magnetization reversal in contrast to linear magneto-optics. Finally, we compare our results with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the magnetic structure and in particular the magnetic easy axis in films and at multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure
    • …
    corecore